ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
R.D. Pillsbury, Jr., R.J. Thome, B.A. Smith
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1065-1069
Ignition Device | doi.org/10.13182/FST91-A29484
Articles are hosted by Taylor and Francis Online.
The poloidal field (PF) coil system in a tokamak must provide the flux swing and the equilibrium and shaping field distributions required to create, maintain, and control the plasma during the discharge. The present design for CIT calls for an 11.8 MA plasma in a double null configuration with a major radius of 2.59 m, a minor radius of 0.795 m, and an elongation (at the 95% flux surface) of 2.0. The toroidal field at the major radius is 9 T. The central solenoid is self-supporting and the TF coils wedge under the Lorentz load. The previous design point called for the TF and PF to buck against each other in order to lower the stresses in both. That design called for an 11 MA, 10 T plasma with a major radius of 2.14 m and a minor radius of 0.66 m. The impact on the PF system of this change in the design point is assessed.