ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Albert K. Fischer
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1012-1017
Blanket Technology | doi.org/10.13182/FST91-A29475
Articles are hosted by Taylor and Francis Online.
The energetics and kinetics of the evolution of H2O and H2 from LiA1O2 are being studied by the temperature programmed desorption technique. The concentrations of H2, H2O, N2, and O2 in a helium stream during a temperature ramp are measured simultaneously with a mass spectrometer. Blank experiments with an empty sample tube showed that square wave spikes of H2 introduced into the helium gas stream were severely distorted by reaction with the tube walls. The tube could be stabilized, however, by sufficiently prolonged heat treatment with H2 so that H2 peaks would not be distorted up to approximately 923 K(650°C). The amount of H2 adsorption/desorption is small compared to the amount of H2O adsorption/desorption. After prolonged treatment with helium containing 990 ppm H2 at 400°C, H2O evolution into the He-H2 stream was observed during 473 to 1023 K (200 to 750°C) ramps at rates of 2 or 5.6 K/min. The different peak shapes reflecting this process were deconvoluted to show that they are composites of only 2 or 3 reproducible processes. The activation energies and pre-exponential terms were evaluated. The different behavior originates in the differences among different surface sites for adsorption. The interpretation of higher temperature peaks (above 873 K (650°C) must still consider the possibility of contributions from interactions with the steel walls. It was found that H2 enhances evolution of N2 from the steel.