ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Alice Y. Ying, Mark S. Tillack
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 990-995
Blanket Technology | doi.org/10.13182/FST91-A29471
Articles are hosted by Taylor and Francis Online.
Laminar heat transfer in self-cooled liquid metal blankets can be enhanced by increasing the aspect ratio of the ducts. To determine the potential benefits of elongated rectangular ducts, numerical simulations of MHD fully-developed flow and developing heat transfer were performed. Results show that as the aspect ratio increases (i.e., the ratio of the side wall to Hartmann wall length), the peak velocity and side layer flow quantity increase, which leads to enhancement of the average heat transfer coefficient along the side layer. The pressure gradient decreases with increasing elongation, providing an added benefit. However, results of the heat transfer analysis also indicate that the non-uniformity along the heated wall and the peak wall temperature both increase as the aspect ratio increases, due to smaller velocities in the corners and near the interface between the side layer and the core. The net benefit to reactor blanket design is therefore uncertain, because designs are usually constrained by the peak structure temperature. At fixed velocity, elongated ducts always have higher peak temperatures. However, the reduction in pressure gradient allows the designer to increase the average velocity, which improves thermal performance due to lower bulk temperature rise as well as higher wall heat transfer coefficient. Calculations show that peak temperatures can be reduced relative to the square duct case with lower pressure gradient by optimizing the velocity. Elongated ducts may suffer from larger pressure stresses due to geometric factors. Thermal stresses are also likely to increase, owing to the increased thermal gradients in the walls. Overall, it is difficult to guarantee that elongation will provide improved performance without a more detailed design analysis.