ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Alice Y. Ying, Mark S. Tillack
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 990-995
Blanket Technology | doi.org/10.13182/FST91-A29471
Articles are hosted by Taylor and Francis Online.
Laminar heat transfer in self-cooled liquid metal blankets can be enhanced by increasing the aspect ratio of the ducts. To determine the potential benefits of elongated rectangular ducts, numerical simulations of MHD fully-developed flow and developing heat transfer were performed. Results show that as the aspect ratio increases (i.e., the ratio of the side wall to Hartmann wall length), the peak velocity and side layer flow quantity increase, which leads to enhancement of the average heat transfer coefficient along the side layer. The pressure gradient decreases with increasing elongation, providing an added benefit. However, results of the heat transfer analysis also indicate that the non-uniformity along the heated wall and the peak wall temperature both increase as the aspect ratio increases, due to smaller velocities in the corners and near the interface between the side layer and the core. The net benefit to reactor blanket design is therefore uncertain, because designs are usually constrained by the peak structure temperature. At fixed velocity, elongated ducts always have higher peak temperatures. However, the reduction in pressure gradient allows the designer to increase the average velocity, which improves thermal performance due to lower bulk temperature rise as well as higher wall heat transfer coefficient. Calculations show that peak temperatures can be reduced relative to the square duct case with lower pressure gradient by optimizing the velocity. Elongated ducts may suffer from larger pressure stresses due to geometric factors. Thermal stresses are also likely to increase, owing to the increased thermal gradients in the walls. Overall, it is difficult to guarantee that elongation will provide improved performance without a more detailed design analysis.