ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
T. Kurasawa, R. A. Verrali, O. D. Slagle, G. W. Hollenberg
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 931-937
Blanket Technology | doi.org/10.13182/FST91-A29463
Articles are hosted by Taylor and Francis Online.
The BEATRIX-II experiment in FFTF is an in-situ tritium recovery experiment to evaluate the tritium release characteristics of Li2O and its stability under fast neutron irradiation to extended burnups. This experiment includes two specimens: a thin annular ring specimen capable of temperature transients and a solid temperature gradient specimen. During the first 85 days of the operating cycle of the reactor, the tritium recovery rate of a temperature transient capsule was examined as a function of temperature, gas flow rate, gas composition and burnup. Temperature changes in the range from 500 to 650°C resulted in decreasing tritium inventory with increasing temperature. Lower gas flow rates resulted in slightly lower tritium recovery rates while gas composition changes affected the tritium recovery rate significantly more than either flow rate or temperature changes. Three different sweep gases were used: He-0.1% H2, He-0.01% H2, and pure He. Decreasing the amount of hydrogen in the sweep gas decreased the steady-state recovery rate by as much as a factor of two. A temperature gradient capsule is more prototypic of the conditions expected in a fusion blanket and was designed to provide data that can be used in evaluating the operational parameters of a solid breeder in a blanket environment. The operation of this canister during the first 85 EFPD cycle suggests that Li2O is a viable solid breeder material.