ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
S. Sharafat, C. P. C. Wong, E. E. Reis, THE ARIES TEAM
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 901-907
Advanced Reactor | doi.org/10.13182/FST91-A29459
Articles are hosted by Taylor and Francis Online.
The ARIES-I reactor is a 1000-MWe, DT-burning tokamak reactor that combines present-day physics with advanced engineering technology such as high-field superconducting magnets and low-activation SiC composites as structural material. Recent developments in the manufacturing of fiber-reinforced ceramics for improved mechanical properties make these materials promising candidates for future fusion reactors. The low-activation, low-afterheat characteristics of SiC can lead to an inherently safe reactor design with a Class-C waste-disposal rating. The first wall, blanket, shield, and the divertor all use SiC composite as structural material and helium as coolant. The thermomechanical behavior of the first wall is analyzed using the ANSYS finite-element code. The analysis shows that the first wall performs well below suggested allowable stress and temperature limits. Although the finite element analysis assumes idealized conditions, the results indicate that SiC composite materials could perform well under specified operating conditions. Given the potential safety and environmental advantages of SiC composites, the current large-scale developmental efforts taking place outside of the fusion community should be complemented by R&D efforts that focus on neutron- and ionizing-irradiation effects on SiC composite materials.