ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
H. Y. Khater, W. F. Vogelsang
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 864-869
Advanced Reactor | doi.org/10.13182/FST91-A29453
Articles are hosted by Taylor and Francis Online.
Experimental radionuclide production cross sections have been collected for protons with energy similar to those protons produced in a D-3He fusion reactor. Proton energy-dependent cross sections (Ep < 14.7 MeV) were used along with the proton stopping data of Anderson and Ziegler to produce a proton-induced thick-target radionuclide activation yields library. In its present form, the library contains thick-target yield data for 164 radioactive isotopes. The library has been used in an activation analysis study aimed at investigating the effect of proton-induced activity on the total level of radioactivity generated in Apollo-L2 (a D-3He tokamak fusion power reactor). Because protons have a short range in solid targets, their effect has been noticed only within the first wall of the reactor. Results showed that while neutron-induced specific activity generated in the reactor Tenelon first wall is 8.1 × 107 Ci/m3, proton-induced specific activity only amounted to 6.37 × 105 Ci/m3.