ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
H. Y. Khater, W. F. Vogelsang
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 864-869
Advanced Reactor | doi.org/10.13182/FST91-A29453
Articles are hosted by Taylor and Francis Online.
Experimental radionuclide production cross sections have been collected for protons with energy similar to those protons produced in a D-3He fusion reactor. Proton energy-dependent cross sections (Ep < 14.7 MeV) were used along with the proton stopping data of Anderson and Ziegler to produce a proton-induced thick-target radionuclide activation yields library. In its present form, the library contains thick-target yield data for 164 radioactive isotopes. The library has been used in an activation analysis study aimed at investigating the effect of proton-induced activity on the total level of radioactivity generated in Apollo-L2 (a D-3He tokamak fusion power reactor). Because protons have a short range in solid targets, their effect has been noticed only within the first wall of the reactor. Results showed that while neutron-induced specific activity generated in the reactor Tenelon first wall is 8.1 × 107 Ci/m3, proton-induced specific activity only amounted to 6.37 × 105 Ci/m3.