ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
Massimo Zucchetti
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 852-856
Advanced Reactor | doi.org/10.13182/FST91-A29451
Articles are hosted by Taylor and Francis Online.
Three types of fusion reactors, based on DT, DD and DHe fuel cycles, are compared from the first wall neutron-induced radioactivity point of view. Some of the definitions of low-activity, based on hands-on recycling, remote recycling, “U.S.” shallow land burial and deep geological confinement waste management criteria, are discussed. A three-classes rank of low-activity is proposed. The analysis of the induced radioactivity in first-wall steels shows that the long-term activity remains at high levels in DD and DHe cases too. DD and DT first-wall steels can be classified in none of the above-mentioned low-activity classes. Neutron induced radioactivity in some of the main constituting elements for the first-wall varies, when turning from DT to DD or DHe irradiation conditions. This depends on the different ways by which the long-lived radioactive nuclides are produced. Materials selection and low-activation alloys development, in order to minimize activity, will be necessary also for the first walls of fusion reactors based on advanced fuel cycles.