ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Massimo Zucchetti
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 852-856
Advanced Reactor | doi.org/10.13182/FST91-A29451
Articles are hosted by Taylor and Francis Online.
Three types of fusion reactors, based on DT, DD and DHe fuel cycles, are compared from the first wall neutron-induced radioactivity point of view. Some of the definitions of low-activity, based on hands-on recycling, remote recycling, “U.S.” shallow land burial and deep geological confinement waste management criteria, are discussed. A three-classes rank of low-activity is proposed. The analysis of the induced radioactivity in first-wall steels shows that the long-term activity remains at high levels in DD and DHe cases too. DD and DT first-wall steels can be classified in none of the above-mentioned low-activity classes. Neutron induced radioactivity in some of the main constituting elements for the first-wall varies, when turning from DT to DD or DHe irradiation conditions. This depends on the different ways by which the long-lived radioactive nuclides are produced. Materials selection and low-activation alloys development, in order to minimize activity, will be necessary also for the first walls of fusion reactors based on advanced fuel cycles.