ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
J.Schwartz, L.Bromberg, D.R. Conn, J.H. Schultz, J.E.C. Williams
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 830-835
Advanced Reactor | doi.org/10.13182/FST91-A29447
Articles are hosted by Taylor and Francis Online.
The commercial viability of high field tokamaks is critically dependent upon the development of high field, high energy superconducting magnets. In this paper, superconducting magnet development requirements are discussed in terms of superconducting materials, structural materials and magnet engineering. Superconducting and structural materials are evaluated for processing techniques, properties and applicability to large scale magnets. Both conventional low Tc and high Tc ceramic superconductors are considered. For structural materials, cryogenic steels as well as fiber reinforced composite materials are discussed. The application of advanced materials, in particular high Tc superconductors and fiber reinforced composites, poses unique engineering problems that must be addressed. These problems are exacerbated by the very large stored energy inherent to any large high field magnet. Potential solutions are analyzed and areas of uncertainty are identified. A 30 year development program leading to a 24 Tesla toroidal field coil for a commercial reactor is outlined.