ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Michael T. Tobin
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 763-769
Inertial Fusion | doi.org/10.13182/FST91-A29437
Articles are hosted by Taylor and Francis Online.
A preliminary neutronics analysis of the HYLIFE-II reactor concept gives a tritium breeding ratio of 1.17 and a system energy multiplication factor of 1.14. Modified SS-316 (in which Mn is substituted for Ni) is superior to Hastelloy X and Hastelloy N as a first-wall material considering He generation, dpa-limited lifetime, and shallow-burial index. Since Flibe is corrosive to Mn metals, however, a favorable first-wall material is yet to be decided on. Flibe impurities considered (e.g., inherent impurities and those arising from wall erosion or secondary-coolant leakage) do not increase the hazard to the public over that of pure Flibe. The main issues for HYLIFE-II are the high shallow-burial index (106) and the requirement to contain some 99.7% of the 18F inventory to prevent its release to the public.