ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Browns Ferry’s reactors receive subsequent license renewals
The operating licenses for the three boiling water reactors at Browns Ferry nuclear power plant, in Athens, Ala., have each been renewed by the Nuclear Regulatory Commission for an additional 20 years. The reactors, operated by the Tennessee Valley Authority, are now licensed to operate until December 2053 for Unit 1, June 2054 for Unit 2, and July 2056 for Unit 3.
Robert L. Bieri
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 752-757
Inertial Fusion | doi.org/10.13182/FST91-A29435
Articles are hosted by Taylor and Francis Online.
The SAFIRE (Systems Analysis for ICF Reactor Economics) code was adapted to model a power plant using a HYLIFE-II reactor chamber. The code was then used to examine the dependence of the plant capital costs and the busbar cost of electricity (COE) on a variety of design parameters (type of driver, chamber repetition rate, and net electric power). The results show the most attractive operating space for each set of driver/target assumptions and quantify the benefits of improvements in key design parameters. The basecase plant was a 1,000-MWe plant containing a reactor vessel driven by an induction linac heavy-ion accelerater, run at 8 Hz with a driver energy of 6.73 MJ and a target yield of 350 MJ. The total direct cost for this plant was $2.6 billion. (All costs in this paper are given in equivalent 1988 dollars.) The COE was 8.5 ¢/(kW·h). The COE and total capital costs for a 1,000-MWe base plant are nearly independent of the chosen combination of repetition rate and driver energy for a driver operating between 4 and 10 Hz. For comparison, the COE for a coal or future fission plant would be 4.5–5.5 ¢/(kW·h). The COE for a 1,000-MWe plant could be reduced to 7.5 ¢/(kW·h) by using advanced targets and could be cut to 6.5 ¢/(kW·h) with conventional targets, if the driver cost could be cut in half. There is a large economy of scale with heavy-ion-driven inertial confinement fusion (ICF) plants. A 2,000-MWe plant with a heavy-ion driver and a HYLIFE-II chamber would have a COE of only 5.8 ¢/(kW·h).