ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
X.M. Chen, V.E.Schrock
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 721-726
Inertial Fusion | doi.org/10.13182/FST91-A29430
Articles are hosted by Taylor and Francis Online.
During isochoric heating by fast neutron irradiation, a high pressure is almost instantaneously built up inside the falling liquid jets in a HYLIFE inertial confinement fusion (ICF) reactor. It has been suggested that the jets will breakup as a consequence of negative pressure occurring during the relaxation1,2. This is important to both the subsequent condensation process and the chamber wall design. In this paper the mechanism of the relaxation of liquid jets after isochoric heating has been studied with both incompressible and compressible models. The transient pressure field predicted is qualitatively similar for both models and reveals a strongly peaked tension in the wake of a rarefaction wave. The pressure then rises monotonically in radius to zero pressure on the boundary. The incompressible approximation greatly over predicts the peak tension, which increases with time as the rarefaction wave moves toward the center of the jet. Since the tension distribution is as a narrow spike rather than uniform, a cylindrical fracture is the most likely mode of failure. This paper also discusses the available methods for estimating liquid tensile strength.