ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
J. J. MacFarlane, P. Wang, G. A. Moses
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 703-708
Inertial Fusion | doi.org/10.13182/FST91-A29427
Articles are hosted by Taylor and Francis Online.
We present results from radiation transport calculations for plasma conditions that are expected for the buffer gases of high-gain inertial confinement fusion (ICF) target chambers. In our calculations, the plasmas are not assumed to be in local thermodynamic equilibrium (LTE). The state of the plasmas is obtained by solving multilevel atomic rate equations self-consistently with the radiation field. Radiation is transported using an escape probability model. Atomic physics data is generated using a combination of Hartree-Fock, distorted wave, and semi-classical impact parameter models. Our results show that the self-attenuation of line radiation results in a significant reduction in the radiation flux at the target chamber first wall. We compare our results with those from other calculations and find that the heat fluxes at the first wall are significantly lower than previously predicted by multigroup radiation diffusion models. The lower heat fluxes suggest that thermal conduction within the first wall can act to keep temperatures near the surface of the wall much lower than previously thought, thus reducing problems associated with thermal stresses and vaporization. We discuss the ramifications of our results for the SIRIUS-T ICF reactor.