ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
J. J. MacFarlane, P. Wang, G. A. Moses
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 703-708
Inertial Fusion | doi.org/10.13182/FST91-A29427
Articles are hosted by Taylor and Francis Online.
We present results from radiation transport calculations for plasma conditions that are expected for the buffer gases of high-gain inertial confinement fusion (ICF) target chambers. In our calculations, the plasmas are not assumed to be in local thermodynamic equilibrium (LTE). The state of the plasmas is obtained by solving multilevel atomic rate equations self-consistently with the radiation field. Radiation is transported using an escape probability model. Atomic physics data is generated using a combination of Hartree-Fock, distorted wave, and semi-classical impact parameter models. Our results show that the self-attenuation of line radiation results in a significant reduction in the radiation flux at the target chamber first wall. We compare our results with those from other calculations and find that the heat fluxes at the first wall are significantly lower than previously predicted by multigroup radiation diffusion models. The lower heat fluxes suggest that thermal conduction within the first wall can act to keep temperatures near the surface of the wall much lower than previously thought, thus reducing problems associated with thermal stresses and vaporization. We discuss the ramifications of our results for the SIRIUS-T ICF reactor.