ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Flamanville-3 reaches full power
France’s state-owned electric utility EDF has announced that Flamanville-3—the country’s first EPR—reached full nuclear thermal power for the first time, generating 1,669 megawatts of gross electrical power. This major milestone is significant in terms of both this project and France’s broader nuclear sector.
Robert R. Peterson
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 686-691
Inertial Fusion | doi.org/10.13182/FST91-A29424
Articles are hosted by Taylor and Francis Online.
The design of target chambers for the Inertial Confinement Fusion (ICF) Laboratory Microfusion Facility (LMF) requires a good understanding of the pressure loadings experienced by the chamber walls. Beam transport, diagnostics, and LMF applications place severe constraints on the chamber fill gas; in current light ion beam concepts only 1.5 torr-meters of helium are between the target and the closest target chamber structures. Simulations of the unavoidable vaporization of the first wall have been performed with the CONRAD computer code for a light ion beam LMF concept. Results show that the peak pressure on the wall is a function of the target x-ray power density on the wall, while the impulse on the wall is a function of x-ray fluence.