ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Osman Yasar, Gregory A. Moses, Robert R. Peterson
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 669-672
Inertial Fusion | doi.org/10.13182/FST91-A29421
Articles are hosted by Taylor and Francis Online.
One method of propagating light ions from beam generating diodes to ICF targets in a fusion reactor is to use laser-guided plasma discharge channels to magnetically guide the ions. Earlier studies of different cavity gases (argon, nitrogen, helium) for the LIBRA reactor study indicated that the lower atomic number gases (helium) were most suitable for plasma channel formation. We found unacceptable channel expansion due to radiative transfer where the radiation transport was calculated with a multigroup diffusion computer code. A new set of simulations using a newly developed adaptive-grid radiation magnetohydrodynamics scheme with a multigroup discrete ordinates radiation transport method has led to lower absorption and emission by such thin plasmas. Application of the new scheme to LIBRA thus shows the feasibility of using argon and nitrogen as well for the channel plasma. Higher atomic number gases more strongly attenuate the x-rays coming from the target explosion. Also, by using an adaptive grid, the new scheme provides better accuracy and resolution where it is needed in the channel. The discharge current required to form the channel is found to be 70 kA as opposed to 100 kA predicted by earlier calculations. This will have the effect of reducing the required discharge voltage and thus will ease the problem of electrical breakdown between the channel and the target chamber wall.