ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
John H. Pitts, Max Tabak
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 640-645
Inertial Fusion | doi.org/10.13182/FST91-A29417
Articles are hosted by Taylor and Francis Online.
The use of a 1-kg solid-lithium x-ray and debris shield around each fusion fuel pellet prevents vaporization of, and destructive shock waves in, the Cascade blanket granules thereby increasing their lifetime. The shield vaporizes as it absorbs energy and the vapor flows into the blanket several centimeters. The shield also increases tritium breeding and enhances vacuum pumping of high Z materials that are vaporized in the fuel pellet. Using heavy ion beams allows illumination of the fuel pellets with the restricted geometry present in Cascade. We used a 5 MJ driver with 18 beams (one 3 × 3 array from each end).