ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
David L. Galbraith, Terry Kammash
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 492-497
Technical Paper | Plasma Engineering | doi.org/10.13182/FST91-A29389
Articles are hosted by Taylor and Francis Online.
The net radial momentum transfer to an inertially confined spherical plasma as a result of the slowing down of fusion product ions is calculated assuming a straight-line path for the charged particles. It is shown that such a momentum is outwardly directed and that the importance of this momentum transfer relative to the total momentum is measured roughly by the ratio of its value to that of the radial derivative of the pressure. When applied to the hot core of a magnetically insulated, inertially confined plasma, it is shown that this effect is negligible. In the case of a standard implosion-type inertial fusion, however, the outward momentum transfer from fusion alpha particles is considerable and cannot be ignored.