ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
DOE seeks proposals for AI data centers at Paducah
The Department of Energy’s Office of Environmental Management has issued a request for offer (RFO) seeking proposals from U.S. companies to build and power AI data centers on the DOE’s Paducah Site in Kentucky. Companies are being sought to potentially enter into one or more long-term leasing agreements at the site that would be solely funded by the applicants.
Alan J. Wootton, Steven C. McCool, Shaobai Zheng
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 473-491
Technical Paper | Divertor System | doi.org/10.13182/FST91-A29388
Articles are hosted by Taylor and Francis Online.
A simple test particle model that attempts to describe particle motion in the presence of intrinsic electrostatic fluctuations in a prescribed tokamak magnetic field is presented. In particular, magnetic field configurations that include externally produced magnetic islands and stochastic regions are considered. The resulting test particle transport is compared with the predictions of analytic models and with the experimentally measured electron heat and particle transport on the Texas Experimental Tokamak (TEXT). Agreement between the test particle results and applicable analytic theories is found. However, there is only partial agreement with the experimental results, and possible reasons for the discrepancies are explored. Good agreement is found between predicted and measured spatially asymmetric particle distributions. The particle collection efficiency of an apertured limiter inside a magnetic island (an intra-island pump limiter) is discussed.