ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Shigeo Numata, Yasuhiko Fujii, Makoto Okamoto
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 466-472
Technical Paper | Safety Environmental Aspect | doi.org/10.13182/FST91-A29387
Articles are hosted by Taylor and Francis Online.
Cleanup of tritiated water in typical reactor-size concrete enclosures is simulated taking into account the soaking of the tritiated water into the concrete. For an enclosure made of concrete with ordinary porosity, the “soaking effect” has little effect on the cleanup time for releases with tritium concentrations of <1 × 108 Bq/m3. If the concrete porosity is reduced to 0.03, the soaking effect has little effect on the cleanup time for a tritium concentration of up to 1 × 109 Bq/m3. An optimum flow rate of between 1 × 104 and 1.5 × 104 m3/h for the tritium removal system minimizes the costs of removal system equipment and facility downtime for releases with a concentration >5 × 108 Bq/m3 in a typical reactor-size enclosure. Estimated total costs to complete the cleanup within 48 and 72 h with these flow rates are within 1.3 times of the minimum total costs. The estimated total costs for a cleanup time of 48 h are comparable to those for a cleanup time of 72 h.