ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Shigeo Numata, Yasuhiko Fujii, Makoto Okamoto
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 466-472
Technical Paper | Safety Environmental Aspect | doi.org/10.13182/FST91-A29387
Articles are hosted by Taylor and Francis Online.
Cleanup of tritiated water in typical reactor-size concrete enclosures is simulated taking into account the soaking of the tritiated water into the concrete. For an enclosure made of concrete with ordinary porosity, the “soaking effect” has little effect on the cleanup time for releases with tritium concentrations of <1 × 108 Bq/m3. If the concrete porosity is reduced to 0.03, the soaking effect has little effect on the cleanup time for a tritium concentration of up to 1 × 109 Bq/m3. An optimum flow rate of between 1 × 104 and 1.5 × 104 m3/h for the tritium removal system minimizes the costs of removal system equipment and facility downtime for releases with a concentration >5 × 108 Bq/m3 in a typical reactor-size enclosure. Estimated total costs to complete the cleanup within 48 and 72 h with these flow rates are within 1.3 times of the minimum total costs. The estimated total costs for a cleanup time of 48 h are comparable to those for a cleanup time of 72 h.