ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Maurizio Angelone, Paola Batistoni, Marcello Martone, Mario Pillon, Massimo Rapisarda, Sofia Rollet
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 431-439
Technical Paper | Experimental Device | doi.org/10.13182/FST91-A29383
Articles are hosted by Taylor and Francis Online.
The Frascati Tokamak Upgrade (FTU) neutron activation system has been calibrated using indium foils and a 252Cf spontaneous fission neutron source located at several positions within the tokamak. The same experimental arrangements have been simulated with the MCNP Monte Carlo neutron and photon transport code in order to numerically reproduce the activation response coefficients measured experimentally. The main purpose of the comparison is to assess the accuracy of the numerical simulation and of the modeling of the FTU device. This analysis has a more general relevance in view of the use of the activation system as an independent method for the absolute measurement of the neutron yield in next-step fusion devices. An overall agreement at the 22% level between experiment and calculation has been demonstrated.