ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Akito Takahashi, Toshiyuki Iida, Fujio Maekawa, Hisashi Sugimoto, Shigeo Yoshida
Fusion Science and Technology | Volume 19 | Number 2 | March 1991 | Pages 380-390
Technical Note | doi.org/10.13182/FST91-A29373
Articles are hosted by Taylor and Francis Online.
Based on the electron screening effect and the excitation of deuteron harmonic oscillators in a palladium lattice, possible explanations of cold fusion phenomena and the possibility of nuclear heating are discussed. A narrow window is proposed to reach the ∼10 W/cm3 required nuclear heating for three-body fusion by a hypothetical excitation-screening model. A relatively wide window is feasible to reach a few fusion events per second per cubic centimetre under the non-stationary conditions of deuteron charging and discharging. Cold fusion is not feasible under stationary lattice conditions. To confirm the cold fusion phenomena, a heavy water electrolysis experiment is carried out using biased-pulse electrolytic currents, in order to enhance the detection of cold fusion events during charging and discharging of deuterons. A cross-checking system consisting of a recoil-proton scintillation detector and a 3He thermal neutron detector is used to determine the patterns of neutron emission over time. To determine the energy of the emitted neutrons, the pulse-height spectra of the recoil-proton detector are monitored. For a deuterium charging time of 300 h, neutron yields of 1 to 2 n/s·cm3 are obtained for time intervals of 60 to 200 h. From the recoil-proton spectra, it is confirmed that 2.45-MeV neutrons from the D(d, n)3He fusion branch reaction are emitted. The observed time patterns of neutron emission suggest the existence of cold fusion under deuterium charging and discharging.