ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
R. Stephen Devoto, William L. Barr, Richard H. Bulmer, Robert B. Campbell, Max E. Fenstermacher, Joseph D. Lee, B. Grant Logan, John R. Miller, Louis L. Reginato, R. A. Krakowski, Ronald L. Miller, Oscar A. Anderson, W. S. Cooper, Joel H. Schultz, James J. Yugo, Joel H. Fink, Yousry Gohar
Fusion Science and Technology | Volume 19 | Number 2 | March 1991 | Pages 251-272
Technical Paper | Fusion Reactor | doi.org/10.13182/FST91-A29363
Articles are hosted by Taylor and Francis Online.
The extensions of the physics and engineering guidelines for the International Thermonuclear Experimental Reactor (ITER) device needed for acceptable operating points for a steady-state tokamak power reactor are examined. Noninductive current drive is provided in steady state by high-energy neutral beam injection in the plasma core, lower hybrid slow waves in the outer regions of the plasma, and bootstrap current. Three different levels of extension of the ITER physics/engineering guidelines, with differing assumptions on the possible plasma beta, elongation, and aspect ratio, are considered for power reactor applications. Plasma gain Q = fusion power/input power in excess of 20 and average neutron wall fluxes from 2.3 to 3.6 MW/m2 are predicted in devices with major radii varying from 7.0 to 6.0 m and aspect ratios from 2.9 to 4.3. Only modest enhancements over L-mode (Goldston) energy confinement are required. Peak divertor heat fluxes range up to 12.4 MW/m2, which is somewhat higher than the current ITER design limit of 10 MW/m2 with a magnetically swept divertor. These designs were selected on the basis of improvements in physics/engineering consistent with time scales for development of future reactors. The design reoptimization on the basis of cost of electricity (COE) was then examined using a reactor systems model. This analysis generally verified the original estimates for the required extensions of the ITER guidelines. The COE is projected to be <66 mill/kW(electric) · h in all of the configurations. The smallest reactor, which has the largest neutron wall flux and mass power density, yields the lowest COE, 56 mill/kW(electric)· h. While these costs are marginally competitive with fission power, these modest extensions of the ITER guidelines do produce a viable power reactor. With time for further improvements such as those pursued in the ARIES study, similar designs could present an even more competitive commercial product.