ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Yuji Nakamura, Masahiro Wakatani, Jean-Noel Leboeuf, B. A. Carreras, N. Dominguez, Jeff A. Holmes, V. E. Lynch, S. L. Painter, Luis Garcia
Fusion Science and Technology | Volume 19 | Number 2 | March 1991 | Pages 217-233
Technical Paper | Plasma Engineering | doi.org/10.13182/FST91-A29361
Articles are hosted by Taylor and Francis Online.
Confinement properties of l-2 torsatron/heliotron configurations with number of toroidal field periods, M, in the range of 10 to 14 are studied. This involves the calculation of zero-current and flux-conserving equilibria; stability against Mercier modes and low-n ideal modes, with n denoting the toroidal mode number; and orbit confinement of deeply trapped energetic particles. Optimization of both mag-netohydrodynamic (MHD) and transport properties is pursued under the condition of plasma aspect ratio A = R/a ≥ 7, with R denoting the major radius and a the average plasma radius. For configurations with M ≤ 12, an average MHD beta limit of 4 to 5% is possible. The addition of a quadrupole field improves the confinement of trapped particles at zero pressure, but particle losses increase with increasing beta. This loss is less severe if the vacuum magnetic axis is shifted slightly inward. A configuration with M = 10, a coil pitch parameter pc in the range 1.25 to 1.30, and an added quadrupole field satisfies the beta and energetic particle confinement requirements for the next generation of large torsatron/heliotron devices.