ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Dieter Seeliger, Andreas Meister
Fusion Science and Technology | Volume 19 | Number 4 | July 1991 | Pages 2114-2118
Technical Note on Cold Fusion | doi.org/10.13182/FST91-A29348
Articles are hosted by Taylor and Francis Online.
A simple plasmalike model that describes the time behavior of the deuteron-deuteron (d-d) fusion reaction rate as a function of charging time is presented. When used to describe the experimental shape of d-d neutron production rates averaged over broad time intervals, the model gives reasonable agreement. The fusion rates obtained from this comparison are of the order of the magnitude of effects that could be expected by the combination of electron screening and fluctuation enhancement. The model allows predictions of the conditions under which d-d fusion neutrons in condensed matter might be observed and explains why, in many cases, no effects are observed.