ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Dieter Seeliger, Andreas Meister
Fusion Science and Technology | Volume 19 | Number 4 | July 1991 | Pages 2114-2118
Technical Note on Cold Fusion | doi.org/10.13182/FST91-A29348
Articles are hosted by Taylor and Francis Online.
A simple plasmalike model that describes the time behavior of the deuteron-deuteron (d-d) fusion reaction rate as a function of charging time is presented. When used to describe the experimental shape of d-d neutron production rates averaged over broad time intervals, the model gives reasonable agreement. The fusion rates obtained from this comparison are of the order of the magnitude of effects that could be expected by the combination of electron screening and fluctuation enhancement. The model allows predictions of the conditions under which d-d fusion neutrons in condensed matter might be observed and explains why, in many cases, no effects are observed.