ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Michael J. Gouge, Wayne A. Houlberg, Stanley L. Milora
Fusion Science and Technology | Volume 19 | Number 1 | January 1991 | Pages 95-101
Technical Paper | Plasma Engineering | doi.org/10.13182/FST91-A29319
Articles are hosted by Taylor and Francis Online.
Several theories have been developed over the past 15 years to describe the ablation of a solid hydrogenic pellet injected into a hot plasma. The most widely accepted theory is the neutral gas shielding model. This model has been expanded to include ablation by fast ions (as well as electrons), realistic particle distribution functions, self-limiting ablation, and a cold ionized plasma shield beyond the ablating gas. Ablation measurements, including absolute pellet penetration and ablation profiles, from the Impurity Study Experiment, Poloidal Divertor Experiment, Doublet-III, Alcator-C, Tokamak Fontenay-aux-Roses, T-10, Texas Experimental Tokamak, Tokamak Fusion Test Reactor, and Joint European Torus experiments are compared with variations of the neutral gas shielding model under a range of input assumptions.