ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
John Mandrekas, W. M. Stacey, Jr.
Fusion Science and Technology | Volume 19 | Number 1 | January 1991 | Pages 57-77
Technical Paper | Plasma Engineering | doi.org/10.13182/FST91-A29316
Articles are hosted by Taylor and Francis Online.
A zero-dimensional, time-dependent, particle and power balance code was developed and used to evaluate the effectiveness of different burn control methods for the stabilization of unstable ignited and subignited operating points of the International Thermonuclear Experimental Reactor (ITER) physics phase machine. Based on the results of our calculations, we conclude that the operation of ITER at thermally unstable operating points is physically and technologically feasible. Control with auxiliary power modulation seems to be the method of choice for the control of subignited unstable points, while other methods such as modulation of the fueling rate and high-Z impurity injection can also be used, especially for the control of unstable ignited points where auxiliary power modulation cannot be used.