ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Ronald D. Boyd, Sr.
Fusion Science and Technology | Volume 18 | Number 2 | September 1990 | Pages 317-324
Technical Paper | Blanket Engineering | doi.org/10.13182/FST90-A29303
Articles are hosted by Taylor and Francis Online.
Steady-State subcooled water flow boiling experiments were carried out in a uniformly heated horizontal circular channel with a 0.45-MPa exit pressure and with the mass velocity varying from 1.56 to 8.55 Mg/m2·s. Measurements of critical heat flux (CHF), local heat transfer, and pressure drop were made for a smooth-wall 1.02-cm-diam copper test section with a heated length-to-diameter (L/D) ratio of 49.0. For the same inlet temperature near 20.0°C, comparisons are made with previous data with L/D = 33.0, from 30.0 to 50.0, 96.6 (two cases), and 115.5. The exit pressures for the above data are 0.1, 0.45, 0.77, 1.59, and 1.67 MPa, respectively. When L/D is between 49.0 and 115.5, the L/D influence on CHF is found to be significant for a 1.02-cm channel diameter in subcooled flows for mass velocities above 4.0 Mg/m2·s. This finding is important since most researchers and designers assume minimal L/D influence when L/D is >30. Further, the present CHF and local heat transfer data extend the data base (CHF near 1000.0 W/cm2 and heat transfer coefficient near 70 000 W/m2·K) for large channel diameters near 1.0 cm and low exit pressures. These results will assist in preventing catastrophic conditions from occurring in future systems where the L/D influence might inappropriately be neglected. Finally, Gambill's correlation predicts CHF significantly above the present data for CHF below 500 W/cm2. Above 500 W/cm2, however, his correlation agreed well with both the present data and the data for L/D = 96.6.