ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Koji Oishi, Yujiro Ikeda, Chikara Konno, Tomoo Nakamura
Fusion Science and Technology | Volume 18 | Number 2 | September 1990 | Pages 291-309
Technical Paper | Shielding | doi.org/10.13182/FST90-A29301
Articles are hosted by Taylor and Francis Online.
The principal components of concrete were irradiated by 14-MeV neutrons for measurement of their induced activities to verify the activation calculation code THIDA-2 and its related cross-section library CROSSLIB. The observed radioactive nuclides, whose half-lives range from minutes to years, were 28Al, 29Al, 27Mg, 44K, 41Ar, 56Mn, 42K, 24Na, 43K, 48Sc, 47Sc, 47Ca, 46Sc, 54Mn, and 22Na, Experimental and calculated results were compared. Good agreement was obtained within ±20%, for 28Al, 56Mn, 42K, 24Na, 48Sc, 47Ca, 46Sc, and 54Mn with well-estimated production cross sections. Large differences were also observed, however, ranging in value from −50 to +100%, for the other nuclides. The cross-section values near 14 MeV for these nuclides were replaced with the cross-section data measured at the Fusion Neutronics Source at the Japan Atomic Energy Research Institute. Recalculation was performed using the newly estimated group cross sections derived from these data, and agreement between experiment and calculation was improved to within ±20%. From this experimental study, it was proved that the uncertainties of the activation cross-section values could satisfactorily explain the discrepancies of the induced activity calculation.