ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Edward F. Splitt, Won-Ho Choe
Fusion Science and Technology | Volume 18 | Number 2 | September 1990 | Pages 273-280
Technical Paper | Plasma Heating System | doi.org/10.13182/FST90-A29299
Articles are hosted by Taylor and Francis Online.
A Monte Carlo simulation is developed to model minority ion transport and fundamental-mode (n = 1) ion cyclotron resonance heating (ICRH) in asymmetric magnetic field geometries. A discrete event model is used to superimpose resonance-heated nonadiabatic changes in a test ion's magnetic moment on a Coulomb pitch angle scattering model. The ion drift orbit equations of motion are set in a magnetic flux coordinate system that separates fast motion along the field lines from slow motion across the lines. The effects of ICRH on minority ion transport are investigated for 3He in stellarator plasmas. The energy distribution functions of these radio-frequency (rf)-heated ions develop high-energy tails as a result of a preferential gain in velocity in the direction perpendicular to the ambient magnetic field. Estimates of neoclassical flux surface diffusion coefficients indicate that ion losses in an rf-heated stellarator plasma can be an order of magnitude larger than non-ICRH losses. This can be attributed to an rf-increased fraction of trapped ions, which results in increased neoclassical transport across the toroidal flux surfaces.