ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
NRC approves subsequent license renewal for Oconee
All three units at the Duke Energy’s Oconee nuclear power plant in South Carolina are now licensed to operate for an additional 20 years.
Edward F. Splitt, Won-Ho Choe
Fusion Science and Technology | Volume 18 | Number 2 | September 1990 | Pages 273-280
Technical Paper | Plasma Heating System | doi.org/10.13182/FST90-A29299
Articles are hosted by Taylor and Francis Online.
A Monte Carlo simulation is developed to model minority ion transport and fundamental-mode (n = 1) ion cyclotron resonance heating (ICRH) in asymmetric magnetic field geometries. A discrete event model is used to superimpose resonance-heated nonadiabatic changes in a test ion's magnetic moment on a Coulomb pitch angle scattering model. The ion drift orbit equations of motion are set in a magnetic flux coordinate system that separates fast motion along the field lines from slow motion across the lines. The effects of ICRH on minority ion transport are investigated for 3He in stellarator plasmas. The energy distribution functions of these radio-frequency (rf)-heated ions develop high-energy tails as a result of a preferential gain in velocity in the direction perpendicular to the ambient magnetic field. Estimates of neoclassical flux surface diffusion coefficients indicate that ion losses in an rf-heated stellarator plasma can be an order of magnitude larger than non-ICRH losses. This can be attributed to an rf-increased fraction of trapped ions, which results in increased neoclassical transport across the toroidal flux surfaces.