ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
R. Giannella, M. Roccella
Fusion Science and Technology | Volume 18 | Number 2 | September 1990 | Pages 201-222
Technical Paper | Plasma Engineering | doi.org/10.13182/FST90-A29294
Articles are hosted by Taylor and Francis Online.
An analysis (in terms of different figures of merit) of the performances of several recently proposed tokamaks (IGNITOR, Compact Ignition Tokamak, IGNITEX, JIT, Enhanced Tokamak, Next European Torus, Candor) has been performed. The analysis was carried out according to different scaling laws and in various operating scenarios (temperature and density profile control, low and high energy confinement modes). In the plasma model, profile consistency between current density and temperature was assumed, taking into account neoclassical conductivity and the related physical constraints. The profiles obtained simulate the experimental data fairly well for both lower and higher collisional plasmas. A code was developed for this purpose that produces the stationary state contours for a given tokamak at different additional power levels once the scaling law is fixed. For a given machine, automatic analyses of these diagrams can be carried out for different confinement scaling laws and operating conditions. For a given scaling law and operating scenario, the code scans the configuration space looking for the “machines” capable of reaching ignition according to some simple technological constraints. The results for the most conservative situation are also shown.