ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Radomir Ilić, Jože Rant, Tomaž Šutej, Mirko Doberšek, Edvard Krištof, Jure Skvarč, Matjaž Koželj
Fusion Science and Technology | Volume 18 | Number 3 | November 1990 | Pages 505-511
Technical Notes on Cold Fusion | doi.org/10.13182/FST90-A29286
Articles are hosted by Taylor and Francis Online.
A search was conducted for neutrons, protons, tritons, 3He ions, gamma rays, and ion-induced X rays from deuterium-deuterium (D-D) fusion in cast (36-g), annealed (4-g), and cold-rolled (16-g) palladium specimens and a palladium hydrogen thermal valve (11 g) electrochemically charged with deuterium. The palladium cathodes were charged in an electrolytic cell [0.1 M LiOD (99.8% deuterium), platinum anode] at a current density of 25 mA/cm2 from 20 to 140 h. One unique aspect of the experiment was the radiation detection system, consisting of a CR-39 track-etch detector, bare for proton detection (sensitivity limit 4.8 × 10−2 fusion/s), combined with a polyethylene fast neutron radiator (0.95 fusion/s), a boron thermal neutron radiator (26 fusion/s), a BD-100 bubble damage polymer detector (5.2 fusion/s), an array of six 3He proportional counters (126 fusion/s), a CaF2 thermoluminescent dosimeter (11.4 fusion/s), and a germanium semiconductor spectrometer (17 fusion/s). The D-D fusion rate in cast, annealed, and cold-rolled palladium is <3 × 10−22, <7.8 × 10−21 and <1.2 × 10−21 (D-Dn) fusion/D-D pair·s−1, respectively. In the palladium hydrogen thermal valve, this value was <1.1 × 10−23 (D-Dp) fusion/D-D pair·s−1 and <2.3 × 10−22 (D-Dn) fusion/DD pair·s−1.