ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Glenn T. Sager, George H. Miley, Keith H. Burrell
Fusion Science and Technology | Volume 18 | Number 3 | November 1990 | Pages 389-396
Alpha Particles in Fusion Research | Technical Paper | doi.org/10.13182/FST90-A29272
Articles are hosted by Taylor and Francis Online.
Neoclassical transport of minority suprathernial alpha particles is investigated. This work departs from previous investigations in that (a) the banana-width ordering parameter ρθ/L is not formally restricted to be a small parameter and (b) a linearized collision operator that retains the effects of pitch-angle scattering, electron and ion drag, and speed diffusion is used. A step model approximation for the large-aspect-ratio, circular-cross-section tokamak magnetic field is adopted to simplify the orbit-averaging procedure. Assuming that the suprathermal alphas are in the banana regime, an asymptotic expansion in τB/τs ≪ 1 is carried out. The lowest order distribution is independent of poloidal angle on a drift surface and is completely determined by solving an orbit-averaged drift kinetic equation, A variational problem is derived that is equivalent to this three-dimensional, inhomogeneous differential equation. A similar procedure yields an expression for the first-order component f1. Knowledge of f1 is sufficient to obtain expressions for particle and heat fluxes directly from the definitions or from alternate expressions. Extension of this model to account for loss regions in phase space is outlined.