ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Keiji Tani, Masafumi Azumi, Tomonori Takizuka
Fusion Science and Technology | Volume 18 | Number 4 | December 1990 | Pages 625-632
Alpha Particles in Fusion Research | doi.org/10.13182/FST90-A29255
Articles are hosted by Taylor and Francis Online.
The feasibility of passive burn control method using toroidal field ripple-degraded alpha-particle confinement with free expansion of the major radius has been confirmed by a 1.5-dimensional transport code. In this transport code, a scaling of the ripple loss of alpha particles derived from the results of an orbit-following Monte Carlo code is used. For passive burn control, however, >5% of the major radius margin is necessary and the resulting ripple-induced power loss of alpha particles exceeds 20%. Passive burn control in combination with feedback control of the field ripple, a hybrid burn control method, demonstrates very effective burn temperature control. In hybrid burn control, the necessary major radius margin and the controlled field ripple are only 2 to 3% and δc ≲ 1%, respectively. The resulting total power loss of alpha particles is <15%.