ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
S. C. Chiu, V. S. Chan
Fusion Science and Technology | Volume 18 | Number 4 | December 1990 | Pages 591-596
Alpha Particles in Fusion Research | doi.org/10.13182/FST90-A29251
Articles are hosted by Taylor and Francis Online.
Fast-wave current drive presents a promising scheme for steady-state operation of reactor tokamaks. This scheme is being studied for application in the International Thermonuclear Experimental Reactor (ITER), the Joint European Torus (JET), and the Doublet III-D reactor (DIII-D). There are two regimes that appear to be promising, the low-frequency range 0 < ω < 2ΩD and the lower hybrid frequency range ΩD ≪ ω < ωLH. In the latter scheme, the wavelength of the fast wave becomes much shorter than the alpha-particle gyroradius and alpha-particle absorption can become significant. An analytic formula for alpha-particle absorption of fast waves for the standard slowing down distribution has been derived and compared with electron absorption at ITER parameters. It has been found that at TD > 30 keV and ne ∼ 1014 cm−3, the alpha-particle absorption is large and can greatly decrease the current drive efficiency. However, without sacrificing the fusion reactivity rate, by increasing the density and decreasing the temperature 15 keV < TD < 25 keV, the alpha-particle absorption can become small at a sufficiently high frequency. It is suggested that a simulation of the alpha-particle absorption effect on fast-wave current drive can be made in DIII-D by using a lower frequency source (∼30 MHz) to create a minority tail and a high-frequency source (200 MHz) to drive the current. Results of minority absorption are presented. Effects that can improve current drive efficiency are discussed.