ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Guy J. Sadler, Sean W. Conroy, Owen N. Jarvis, Pieter van Belle, J. Martin Adams, Malcolm A. Hone
Fusion Science and Technology | Volume 18 | Number 4 | December 1990 | Pages 556-572
Alpha Particles in Fusion Research | doi.org/10.13182/FST90-A29247
Articles are hosted by Taylor and Francis Online.
An overview of experimental observations of fast-particle behavior in Joint European Torus (JET) plasmas is presented. The material is drawn directly from the results of measurements based on nuclear detection techniques. The earliest observations concern escaping 15-MeV protons from the D-3He reaction; they are detected in the form of spikes at the time of sawtooth crashes. Subsequent observations with a neutron multicollimator show that sawteeth expel neutral beam injected 80-keV deuterons from the central region of the plasma (but not necessarily out of the plasma). Extensive use has been made of the detection of gamma rays created when ion cyclotron resonance frequency (ICRF)-driven fast ions react with plasma fuel ions and with the main plasma impurity ions carbon, oxygen, and beryllium. Threshold reactions show that ICRF-driven ions can exceed energies of 7.5 MeV. Using ratios of gamma-ray intensities, tail temperatures in the mega-electron-volt range have been diagnosed. The energy content of these ions can exceed 1 MJ and can be as much as one-third of the total energy content of the plasma. Finally, the measurement of 14-MeV neutrons emitted during the burnup of tritons generated by the deuterium-deuterium reaction indicates that the single-particle behavior of 1-MeV tritons is classical within 20%, which implies similar behavior for 3.5-MeV alpha particles in deuterium-tritium plasmas.