ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Rodolfo Carrera, Elena Montalvo, James W. Van Dam, Guo-Yong Fu, Lee M. Hively, George H. Miley, Marshall N. Rosenbluth, Steven Tamor
Fusion Science and Technology | Volume 18 | Number 4 | December 1990 | Pages 535-555
Alpha Particles in Fusion Research | doi.org/10.13182/FST90-A29246
Articles are hosted by Taylor and Francis Online.
A simple fusion experiment for the production and control of deuterium-tritium-ignited plasmas for scientific study is considered. The basic elements of fusion product alpha-particle behavior at ignition are analyzed. Alpha-particle containment is rather high even with the assumption of significant levels of toroidal asymmetries. Production of thermally stable plasmas is possible because of the low-beta thermal damping provided by electron cyclotron emission. The stability of internal kink modes, high-number ballooning modes, and toroidicity-induced shear Alfvén eigenmodes is investigated in the presence of fusion alpha particles. These modes can be either stable or unstable depending on the selected operational regime at ignition.