ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Rodolfo Carrera, Elena Montalvo, James W. Van Dam, Guo-Yong Fu, Lee M. Hively, George H. Miley, Marshall N. Rosenbluth, Steven Tamor
Fusion Science and Technology | Volume 18 | Number 4 | December 1990 | Pages 535-555
Alpha Particles in Fusion Research | doi.org/10.13182/FST90-A29246
Articles are hosted by Taylor and Francis Online.
A simple fusion experiment for the production and control of deuterium-tritium-ignited plasmas for scientific study is considered. The basic elements of fusion product alpha-particle behavior at ignition are analyzed. Alpha-particle containment is rather high even with the assumption of significant levels of toroidal asymmetries. Production of thermally stable plasmas is possible because of the low-beta thermal damping provided by electron cyclotron emission. The stability of internal kink modes, high-number ballooning modes, and toroidicity-induced shear Alfvén eigenmodes is investigated in the presence of fusion alpha particles. These modes can be either stable or unstable depending on the selected operational regime at ignition.