ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Robert A. Rice, Gary S. Chulick, Yeong E. Kim, Jin-Hee Yoon
Fusion Science and Technology | Volume 18 | Number 1 | August 1990 | Pages 147-150
Technical Note | Cold Fusion | doi.org/10.13182/FST90-A29241
Articles are hosted by Taylor and Francis Online.
Reaction rates from recent electrochemical fusion experiments have been found to be as many as seventy orders of magnitude larger than those obtained from simple calculations involving an extrapolated low-energy deuterium-deuterium (D-D) cross section and a sharp velocity distribution. However, if an appropriate Maxwell-Boltzmann velocity distribution is used in place of the conventional sharp (mono-energetic) velocity distribution, the calculated reaction rate increases by as much as fifty to sixty orders of magnitude. Furthermore, the center-of-mass energy at which the D-D cross section is evaluated for given D-D energy is much larger than that used in the conventional calculations due to the higher energy components in the Maxwell-Boltzmann distribution. Finally, the above results are not significantly affected if a reasonable high-energy cutoff Ec is included in the velocity distribution.