ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Saber Azam, Anil Kumar
Fusion Science and Technology | Volume 17 | Number 3 | May 1990 | Pages 452-465
Technical Paper | Blanket Engineering | doi.org/10.13182/FST90-A29220
Articles are hosted by Taylor and Francis Online.
The objective of the LOTUS experimental program, started in 1983, is to perform various integral neutronics measurements like neutron spectrometry, activation, and tritium breeding ratio (TBR) on fusion reactor blanket concepts. The first blanket concept studied at the LOTUS facility was the fission-suppressed type. Investigations of pure fusion blanket concepts constitute a logical continuation of this program. The new LOTUS fusion blanket concept employs a eutectic of lithium and lead, for example, 17L-83Pb, and lithium-metal as tritum breeders. The blanket consists of a first wall of low-activation ferritic steel, followed by zones of 17Li-83Pb, 6Li, and a reflector made of graphite or silicon carbide (SiC). The choice of structural material for each zone is based on its compatibility with the primary zonal component. Vanadium alloy (V-15 Cr-5 Ti), low-activation ferritic steel (Fe-11 Cr-2.5 W-0.3 V-0.15 C), and the same vanadium alloy were retained for 17Li-83Pb, 6Li, and graphite or SiC zones, respectively. One-dimensional ANISN calculations have been carried out for the optimization of the blanket dimensions. The main criteria for the optimization calculations are a TBR >1.1 and a compact blanket. An experimental module composed of lead and lithium pellets is proposed to simulate various eutectic compositions. Natural lithium, clad in aluminum, is used due to economic considerations. There are some important differences in the experimental module with respect to the optimized concept, which are mainly related to the location of the 14-MeV neutron source outside the blanket. Foil activation, TBR measurements using novel and conventional techniques, and spectrum measurements employing mini NE-213 and, possibly, NE-230 form the bulk of the experimental program.