ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
P. Massee, L. H. Th. Rietjens, A. J. D. Lambert
Fusion Science and Technology | Volume 17 | Number 3 | May 1990 | Pages 439-451
Technical Paper | Energy Conversion | doi.org/10.13182/FST90-A29219
Articles are hosted by Taylor and Francis Online.
The in situ magnetohydrodynamic (MHD) concept is a new proposal to convert the power of a nuclear fusion tokamak reactor into electricity. To determine the feasibility of this concept, quasi-one-dimensional calculations of MHD generators with a mercury-cesium medium are performed. The question of whether the electron cyclotron radiation emitted by the fusion plasma can be absorbed by the medium in the MHD generator so as to be able to work with enhanced nonequilibrium ionization is studied. It is concluded that this cannot be realized in practice. To obtain reasonably compact MHD generators, the stagnation pressure at the inlet of the generator should be rather low (< 1.8 bars). Under these circumstances, however, the absorption length that is needed for the generator medium to absorb the cyclotron radiation is excessively large. It is concluded that an enthalpy extraction of 35% per generator leads to a cycle efficiency of only 16.7%. To convert 35% of the fusion power into electricity, the enthalpy extraction of each generator should be increased to ∼70%. This is not considered to be realistic in view of the enthalpy extractions obtained experimentally in seeded noble gas MHD generators at a stagnation temperature of ∼2000 K.