ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
P. Massee, L. H. Th. Rietjens, A. J. D. Lambert
Fusion Science and Technology | Volume 17 | Number 3 | May 1990 | Pages 439-451
Technical Paper | Energy Conversion | doi.org/10.13182/FST90-A29219
Articles are hosted by Taylor and Francis Online.
The in situ magnetohydrodynamic (MHD) concept is a new proposal to convert the power of a nuclear fusion tokamak reactor into electricity. To determine the feasibility of this concept, quasi-one-dimensional calculations of MHD generators with a mercury-cesium medium are performed. The question of whether the electron cyclotron radiation emitted by the fusion plasma can be absorbed by the medium in the MHD generator so as to be able to work with enhanced nonequilibrium ionization is studied. It is concluded that this cannot be realized in practice. To obtain reasonably compact MHD generators, the stagnation pressure at the inlet of the generator should be rather low (< 1.8 bars). Under these circumstances, however, the absorption length that is needed for the generator medium to absorb the cyclotron radiation is excessively large. It is concluded that an enthalpy extraction of 35% per generator leads to a cycle efficiency of only 16.7%. To convert 35% of the fusion power into electricity, the enthalpy extraction of each generator should be increased to ∼70%. This is not considered to be realistic in view of the enthalpy extractions obtained experimentally in seeded noble gas MHD generators at a stagnation temperature of ∼2000 K.