ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Yasushi Yamamoto, Kiyoshi Yoshikawa, Hisayuki Toku, Tsuneyuki Haga
Fusion Science and Technology | Volume 17 | Number 4 | July 1990 | Pages 540-554
Technical Paper | Beam Direct Conversion | doi.org/10.13182/FST90-A29190
Articles are hosted by Taylor and Francis Online.
Experiments and simulations were performed for helium ion beams to confirm the general validity of the two-dimensional beam direct energy conversion simulation code KUAD (Kyoto University Advanced Dart) for a wide range of beam parameters and to better understand how the performance of beam direct energy recovery is dependent on beam parameters. The experiments compared currents in the 60- to 140-mA range for 15-keV beam energy and from 130 to 250 mA for 20-keV beam energy. Beam behaviors numerically predicted for different currents and collector potentials were verified. Numerically obtained performance characteristics of the beam direct energy recovery generally show excellent agreement with experimental results within experimental errors. The only discrepancy occurs in the vicinity of the collector potential corresponding to the maximum energy recovery due to possible deviation from the axisymmetry of electrodes and to their small misalignment with respect to the beam axis. Beam perveance rather than beam energy or current is a good parameter for the evaluation of the performance of beam direct energy recovery. Maximum energy recovery efficiencies of 87 ± 4% for 15-keV and 85 ± 4% for 20-keV beams have been achieved.