ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Yasushi Yamamoto, Kiyoshi Yoshikawa, Hisayuki Toku, Tsuneyuki Haga
Fusion Science and Technology | Volume 17 | Number 4 | July 1990 | Pages 540-554
Technical Paper | Beam Direct Conversion | doi.org/10.13182/FST90-A29190
Articles are hosted by Taylor and Francis Online.
Experiments and simulations were performed for helium ion beams to confirm the general validity of the two-dimensional beam direct energy conversion simulation code KUAD (Kyoto University Advanced Dart) for a wide range of beam parameters and to better understand how the performance of beam direct energy recovery is dependent on beam parameters. The experiments compared currents in the 60- to 140-mA range for 15-keV beam energy and from 130 to 250 mA for 20-keV beam energy. Beam behaviors numerically predicted for different currents and collector potentials were verified. Numerically obtained performance characteristics of the beam direct energy recovery generally show excellent agreement with experimental results within experimental errors. The only discrepancy occurs in the vicinity of the collector potential corresponding to the maximum energy recovery due to possible deviation from the axisymmetry of electrodes and to their small misalignment with respect to the beam axis. Beam perveance rather than beam energy or current is a good parameter for the evaluation of the performance of beam direct energy recovery. Maximum energy recovery efficiencies of 87 ± 4% for 15-keV and 85 ± 4% for 20-keV beams have been achieved.