ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Kiyoshi Yoshikawa, Yoshihiko Nimura, Yasushi Yamamoto, Hiroshi Watanabe+
Fusion Science and Technology | Volume 17 | Number 4 | July 1990 | Pages 527-539
Technical Paper | Beam Direct Conversion | doi.org/10.13182/FST90-A29189
Articles are hosted by Taylor and Francis Online.
A beam direct energy converter (BDC) is designed to recover unneutralized ion beam energies in a 500-keV negative-ion-based deuterium neutral beam injection system for the Fusion Experimental Reactor of Japan Atomic Energy Research Institute. A newly developed three-dimensional beam transport code KUNABE-3 is used. Due to approximately equal fractions of unneutralized D+ and D− beams flowing from the gas neutralizer, electrostatic electron suppression is efficient. Also, magnetic separation and deflection of both species by a 1-kG magnetic field are efficiently applicable. Under suitable energy recovery conditions, perfect collection of both positive and negative ion beams is theoretically achievable, even for a collector voltage of ±480 kV, resulting in 96% energy recovery efficiency. Within ±10% deviation from the reference parameters, the designed BDC shows excellent performance for such parameters as magnetic fields, incident beam energies, and gas line densities. Secondary electrons emitted from the negative ion collector for D− collection are also almost completely prevented from escaping if an auxiliary electrode controlling local electric field near the electrode surface is used.