ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Albert G. Gu, Robert K. F. Teng, Mark S. Miller, Wayne J. Sprouse
Fusion Science and Technology | Volume 16 | Number 2 | September 1989 | Pages 248-250
Technical Note | doi.org/10.13182/FST89-A29156
Articles are hosted by Taylor and Francis Online.
A series of experiments using deuterium gas and deuterium plasma in the presence of palladium has been designed to observe the possibility of cold fusion. Two kinds of preliminary experiments were recently performed. One involved the diffusion of deuterium gas into palladium. The gas was cooled by liquid nitrogen, and then the temperature was permitted to rise to room temperature, going from near −34 to 19°C (−30 to 67°F) in 75 min. A spherical lithium neutron detector, 21 cm from the palladium, gave an audible indication of neutron levels approximately equal to, but above, background. A second experiment used a deuterium ion beam (1 keV) that bombarded a palladium target. An average counting rate of 36 ± 6 counts for 2 min was measured by a BF3 tube with a paraffin moderator, 50 cm from the target. The background varied from 1 to 7 counts for each 2-min counting period and averaged 4 ± 2 counts in 2 min. A nitrogen ion beam impinging on the same palladium target produced 6 counts for a 2-min counting period. The palladium specimens were a piece of foil and a tube that was used as a palladium leak in a neutron generator. These preliminary experiments will be repeated, improved, and extended later.