ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Robert W. Bussard
Fusion Science and Technology | Volume 16 | Number 2 | September 1989 | Pages 231-236
Technical Note | doi.org/10.13182/FST89-A29152
Articles are hosted by Taylor and Francis Online.
A model of deuterium-deuterium (D-D) fusion in metal lattices is presented based on two phenomena: (a) reactions between virtual-state pairs of deuterons “bound” by electrons of high effective mass m* and (b) deuterium energy upscattering by fast ions from fusion or tritium reactions with virtual-state nuclear structure groups in palladium nuclei. Since m* is a decreasing function of deuterium ion bulk density n0, the exponential barrier tunneling factor decreases rapidly with m*. As a result, the fusion rate reaches a maximum at a loading density above zero but less than saturation. This can explain observations of transient neutron output from the (3He,n) branch of D-D fusion. At low energy, D-D reactions favor the (T,p) branch. Fast product tritium may be captured by palladium isotopes to form excited-state Ag*, removing tritium from the system and preventing deuterium-tritium fusion. This may decay by alpha or proton emission, yielding fast ions and excited state Rh* or Pd*. Fast ion collisional “trapping” may occur at Fermi electron speeds, enhancing in situ upscattering and yielding increased D-D reaction rates. Analysis of the dynamics of these processes suggests conditions for exponential growth.