ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Kurt Borrass
Fusion Science and Technology | Volume 16 | Number 2 | September 1989 | Pages 172-184
Technical Paper | Plasma Engineering | doi.org/10.13182/FST89-A29146
Articles are hosted by Taylor and Francis Online.
Contrary to the assumptions made in previous estimates, next-generation tokamaks are now characterized by lower beta, elevated temperatures (current drive, density limit), and imperfectly reflecting walls (graphite, ceramics). All these features lead to an enhancement of cyclotron radiation losses in relation to, for instance, bremsstrahlung losses. The impact of cyclotron radiation losses on the performance of next-generation tokamaks is rediscussed in the light of these effects. Graphite and silicon carbide (SiC) are considered as typical candidates for weakly and strongly absorbing wall materials, respectively. Various Next European Torus configurations and operation scenarios are taken as representative examples to study the problems relating to plasma performance. The physics of microwave absorption in solid media is reviewed, and various graphite and SiC-based solutions are analyzed. The thermomechanical impact of a volumetric load is also discussed. If all these effects are combined (〈T〉 = 15 keV, weakly or strongly absorbing wall), bremsstrahlung losses and cyclotron radiation losses become comparable and the latter are no longer negligible. In the case of a strongly absorbing wall, cyclotron radiation losses even exceed bremsstrahlung losses by 50%. Due to the strong temperature dependence, cyclotron radiation losses provide a considerable stabilizing effect on thermal runaway. This may provide full stabilization in the case of a favorable confinement scaling or reduce the growth rate to an extent that simplifies application of active stabilization schemes.