ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Kurt Borrass
Fusion Science and Technology | Volume 16 | Number 2 | September 1989 | Pages 172-184
Technical Paper | Plasma Engineering | doi.org/10.13182/FST89-A29146
Articles are hosted by Taylor and Francis Online.
Contrary to the assumptions made in previous estimates, next-generation tokamaks are now characterized by lower beta, elevated temperatures (current drive, density limit), and imperfectly reflecting walls (graphite, ceramics). All these features lead to an enhancement of cyclotron radiation losses in relation to, for instance, bremsstrahlung losses. The impact of cyclotron radiation losses on the performance of next-generation tokamaks is rediscussed in the light of these effects. Graphite and silicon carbide (SiC) are considered as typical candidates for weakly and strongly absorbing wall materials, respectively. Various Next European Torus configurations and operation scenarios are taken as representative examples to study the problems relating to plasma performance. The physics of microwave absorption in solid media is reviewed, and various graphite and SiC-based solutions are analyzed. The thermomechanical impact of a volumetric load is also discussed. If all these effects are combined (〈T〉 = 15 keV, weakly or strongly absorbing wall), bremsstrahlung losses and cyclotron radiation losses become comparable and the latter are no longer negligible. In the case of a strongly absorbing wall, cyclotron radiation losses even exceed bremsstrahlung losses by 50%. Due to the strong temperature dependence, cyclotron radiation losses provide a considerable stabilizing effect on thermal runaway. This may provide full stabilization in the case of a favorable confinement scaling or reduce the growth rate to an extent that simplifies application of active stabilization schemes.