ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Kurt Borrass
Fusion Science and Technology | Volume 16 | Number 2 | September 1989 | Pages 172-184
Technical Paper | Plasma Engineering | doi.org/10.13182/FST89-A29146
Articles are hosted by Taylor and Francis Online.
Contrary to the assumptions made in previous estimates, next-generation tokamaks are now characterized by lower beta, elevated temperatures (current drive, density limit), and imperfectly reflecting walls (graphite, ceramics). All these features lead to an enhancement of cyclotron radiation losses in relation to, for instance, bremsstrahlung losses. The impact of cyclotron radiation losses on the performance of next-generation tokamaks is rediscussed in the light of these effects. Graphite and silicon carbide (SiC) are considered as typical candidates for weakly and strongly absorbing wall materials, respectively. Various Next European Torus configurations and operation scenarios are taken as representative examples to study the problems relating to plasma performance. The physics of microwave absorption in solid media is reviewed, and various graphite and SiC-based solutions are analyzed. The thermomechanical impact of a volumetric load is also discussed. If all these effects are combined (〈T〉 = 15 keV, weakly or strongly absorbing wall), bremsstrahlung losses and cyclotron radiation losses become comparable and the latter are no longer negligible. In the case of a strongly absorbing wall, cyclotron radiation losses even exceed bremsstrahlung losses by 50%. Due to the strong temperature dependence, cyclotron radiation losses provide a considerable stabilizing effect on thermal runaway. This may provide full stabilization in the case of a favorable confinement scaling or reduce the growth rate to an extent that simplifies application of active stabilization schemes.