ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
T. J. Dolan*
Fusion Science and Technology | Volume 16 | Number 2 | September 1989 | Pages 149-156
Technical Paper | Plasma Engineering | doi.org/10.13182/FST89-A29144
Articles are hosted by Taylor and Francis Online.
The one-dimensional equilibrium code BPROF is used to calculate the plasma inductance as a function of beta and pinch parameter θ, and the results are represented by an algorithm. The attainable poloidal flux is calculated for a variety of cases, using the CCOIL code, to derive simple algorithms representing the ohmic heating (OH) and equilibrium field (EF) fluxes in terms of dimensionless parameters. Assuming a temperature scaling relationship with plasma current and size, the loop voltage equation is integrated to find the flux consumed versus the pulse length. This plasma equation is combined with the flux and inductance algorithms to estimate the attainable plasma pulse length, in terms of the peak magnetic field at the coil and the plasma and coil dimensions. The attainable pulse length depends mainly on the major radius. With R = 4 m, a/R = 0.12, and I = 10 MA, a pulse length of ∼15 s is predicted. The voltage drop due to helicity edge loss is a major uncertainty. The main value of this work is the derivation of simple equations for calculating plasma inductance, OH and EF coil fluxes, and plasma pulse length, without having to run BPROF, CCOIL, and plasma transport codes.