ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
H. Noguchi, Clay E. Easterly, M. R. Bennett
Fusion Science and Technology | Volume 16 | Number 2 | September 1989 | Pages 137-142
Technical Paper | Tritium System | doi.org/10.13182/FST89-A29142
Articles are hosted by Taylor and Francis Online.
The conversion reaction of tritium gas (T2) to tritiated water was studied experimentally at initial tritium concentrations between 9.6 × 10−3 and 48 GBq · m−3 (2.6 × 10−4 and 1.3 Ci · m−3) in air. Effects of water vapor and catalysts on the conversion reaction were also examined. Stainless steel, copper, paint, and platinum black were used as potential catalytic surfaces. First-order rate constants for the reaction in air are found to be independent of initial tritium concentration, and there is no effect from water vapor on the reaction. The conversion is insensitive to the presence or absence of stainless steel and copper. Paint sorbs T2 and HTO, but the latter is desorbed from the paint by heating. Platinum black produces the expected increase in the rate of reaction.