ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Robert B. Campbell, L. John Perkins
Fusion Science and Technology | Volume 16 | Number 3 | November 1989 | Pages 383-387
Special Section Content | Cold Fusion Technical Notes | doi.org/10.13182/FST89-A29130
Articles are hosted by Taylor and Francis Online.
In response to the startling announcement of fusion reactions occurring at room temperature by Fleischmann and Pons (F-P), the possible role of high-current densities in producing neutrons and excess heat in deuterated titanium maintained near ambient temperatures and pressures is examined. The apparatus used consists of a balanced resistive circuit containing a deuterated “active” element and a hydrogenated “control” element. The use of a simple electrical circuit (no electrolysis) with elements made of chemically stable TiDx, X = 0.9, removes the complications involved in distinguishing between heat released by chemical versus nuclear processes in an electrolytic cell. This apparatus tests the possibility that the role of high-current density in the F-P experiments is to create such nonequilibrium states as strong pinching due to current microchanneling in the metallic lattice. This strong pinching, in turn, could reduce the deuteron-deuteron separation sufficiently to cause significant fusion. To detect neutrons, an NE-213 liquid organic scintillator spectrometer is used, with gamma counts eliminated by means of pulse-shape discrimination. Samples are subjected to current densities of ∼50 A /cm2 for time periods of 19 h. This current density is a factor of 100 greater than the largest value reported by Fleischmann and Pons. No significant neutron levels are detected above background. The temperature rise of the two samples during the application of the current can be explained by joule heating alone, with no other heat sources present. Based on these experiments, no excess heat is observed within the accuracy of the apparatus, which is estimated to be 10%. It is concluded that the large quantity of excess heat reported by Fleischmann and Pons is due to the presence of factors other than the current density.