ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Sanae-Inoue Itoh, Atsushi Fukuyama, Tomonori Takizuka, Kimitaka Itoh
Fusion Science and Technology | Volume 16 | Number 3 | November 1989 | Pages 346-364
Technical Paper | Plasma Engineering | doi.org/10.13182/FST89-A29126
Articles are hosted by Taylor and Francis Online.
The consistency of physics constraints imposed on a core plasma in a tokamak reactor is investigated. Conditions for the steady-state operation of the International Thermonuclear Experimental Reactor (ITER)-grade plasma are listed, i.e., the density limit, the critical beta, feasibility of full current-drive and divertor functions, etc. The parameter regime, in which these guidelines are simultaneously satisfied, is investigated. Based on the available data base, the consistency of the conditions is examined. The L-mode scaling of the energy confinement time is employed for extrapolation to the ITER-grade plasma. The Q value and the size dependence are studied. The consistent operating regime of the steady-state operation is found. If off set-linear scaling is applied, the minimum and necessary input power is ∼130 MW, which enables the full current drive and the steady-state operation of Q = 2.3 with Ip = 20 MA. When the input power is increased to 200 MW, a Q value of 5 is predicted.