ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Ronald D. Boyd, Sr.
Fusion Science and Technology | Volume 16 | Number 3 | November 1989 | Pages 324-330
Technical Paper | Blanket Engineering | doi.org/10.13182/FST89-A29124
Articles are hosted by Taylor and Francis Online.
Steady-state subcooled water flow boiling experiments were carried out in a uniformly heated horizontal circular channel with an exit pressure of 1.66 MPa and with the mass velocity G varying from 4.4 to 32.0 Mg/m2·s. The test section, which was made of high-strength zirconium-copper, consisted of a tube with an inside diameter of 0.3 cm and a heated length-to-diameter ratio (L/D) of 96.6. The coolant was degassed and deionized water. The inlet water temperature was held constant at 20°C. These experiments are related to high heat flux removal in fusion reactor beam dumps and first walls in compact fusion reactors. For the chosen values of L/D and exit pressure, the measured critical heat flux (CHF) values are higher than any previous values for smooth tubes in the literature. The effect of increasing the pressure from 0.77 to 1.66 MPa is to increase the CHF progressively from 2.0 to 19% as the mass velocity is increased from 4.4 to 25.0 Mg/m2·s. The percent increase in the CHF dropped to 10.0% as G increased from 25.0 to 32.0 Mg/m2·s. Below 25.0 Mg/m2·s, the relationship between the CHF and the mass velocity is linear. Further, an increase in the exit pressure resulted in an increase in the slope of this relationship. However, the local heat transfer coefficient actually decreased as the pressure increased, for the same power level and mass velocity.