ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Terry Kammash, David L. Galbraith
Fusion Science and Technology | Volume 16 | Number 4 | December 1989 | Pages 469-473
Technical Paper | Special Section: Cold Fusion Technical Notes / Tritium System | doi.org/10.13182/FST89-A29109
Articles are hosted by Taylor and Francis Online.
Two schemes have been proposed to replace the aging tritium production facilities at Savannah River, South Carolina. The reactors at that site have been operating for well over a quarter of a century, producing tritium for national defense programs. But serious questions regarding safety and other issues have arisen. The U.S. Department of Energy and the federal government have reiterated their plan to build a heavy water reactor and a high-temperature gas-cooled reactor at a cost of about $7 billion as replacements for the Savannah River facility. A group of scientists from national laboratories, on the other hand, have proposed the use of a linear accelerator to accelerate protons to produce neutrons to be used to produce tritium in lithium targets. They contend that the capital cost of this accelerator tritium producer is competitive with that of the reactors, but the operating cost may be high unless it is located in a region where the cost of hydropower is low. Yet another scheme is proposed that is safe and potentially less expensive than the other two. It relies on existing or rapidly developing laser technology to drive a magnetically insulated inertial confinement fusion device, which has already produced copious amounts of neutrons that could readily be used in producing tritium.