ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Muthar R. Al-Ubaidi, James N. Anno
Fusion Science and Technology | Volume 16 | Number 4 | December 1989 | Pages 464-468
Technical Paper | Special Section: Cold Fusion Technical Notes / Blanket Engineering | doi.org/10.13182/FST89-A29108
Articles are hosted by Taylor and Francis Online.
Microspheres of lithium hydroxide (LiOH) were produced from in-flight solidification of droplets formed by the disintegration of an acoustically driven, mechanically vibrated cylindrical liquid jet of molten LiOH. The molten material at 470 to 480°C was fed through a 25-gauge (0.0267-cm bore diameter) nozzle, interiorly electroplated with silver, under ∼27.6-kPa (4-psig) pressure, and at a mechanical vibration frequency of 10 Hz. The resulting jet issued into a 5.5-cm-diam vertical glass drop tube entraining a 94.5 cm3/s (12 ft3/h) argon gas stream at 75°C. The 100-cm-long drop tube was sufficient to allow the droplets of molten LiOH resulting from jet disintegration to solidify in-flight without catastrophic thermal shock, being then collected as solid microspheres. These LiOH microspheres were then vacuum processed to lithium oxide (Li2O). Preliminary experiments resulted in microspheres with diameters varying from 120 to 185 µim, but with evidence of impurity contamination occurring during the initial stages of the process.